Sains Malaysiana 53(12)(2024): 3377-3388

http://doi.org/10.17576/jsm-2024-5312-20

 

Extraction Efficiency Study of Dysprosium and Neodymium from Acetic Leaching Solution of Xenotime by Di-(2-Ethylhexyl) Phosphoric Acid

(Kajian Kecekapan Pengekstrakan Disprosium dan Neodimium daripada Larutan Lesap Asetik Xenotim oleh Asid Fosforik Di-(2-Etillheksil))

 

KHAIRONIE MOHAMED TAKIP1,2, NOORASHIKIN MD SALEH1,*, ROSHASNORLYZA HAZAN2 & ABDULLAH AMRU INDERA LUTHFI1

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Material Technology Group of Industrial Technology Division, Malaysia Nuclear Agency, 43000 Bangi, Selangor, Malaysia

 

Diserahkan: 26 September 2023/Diterima: 9 Oktober 2024

 

Abstract

The increasing importance of rare earth elements (REEs) in advanced technologies has prompted extensive research on their extraction, notably neodymium (Nd) and dysprosium (Dy), critical components for neo-magnet production. Researchers are actively exploring Nd and Dy recovery from both primary and secondary REE sources, often employing solvent extraction post-acid leaching for effective separation. In this context, a study focused on extracting Nd and Dy from local xenotime minerals utilizing acetic acid (CH3COOH) as the leaching solution and Di-(2-ethylhexyl) phosphoric acid (D2EHPA) in kerosene at a 30% concentration as the organic solvent. Energy Dispersive X-Ray Fluorescence (ED-XRF) analysis gauged Nd and Dy concentrations pre and post-extraction. The study identified optimal conditions, showing peak extraction efficiency: 99.4% for Nd and 99.3% for Dy, achieved using a 1M leaching solution concentration and a 1:1 aqueous-to-organic (A/O) phase volume ratio. The extraction process demonstrated highest efficacy at 30 °C within a 20-min timeframe. Consequently, the investigation highlights the potential of acetic acid as a xenotime leaching medium for Nd and Dy extraction with D2EHPA. Therefore, this study proves that CH3COOH is potentially be used as the leaching media of xenotime for the extraction of Nd and Dy with D2EHPA.

 

Keywords: Dysprosium; D2EHPA; neodymium; rare earth elements; xenotime

 

Abstrak

Kepentingan yang semakin meningkat terhadap unsur bumi jarang (REEs) dalam teknologi canggih telah merangsang penyelidikan yang meluas terhadap pengambilan mereka, terutamanya neodimium (Nd) dan disprosium (Dy), komponen penting untuk pengeluaran neo-magnet. Penyelidik sedang mengkaji pemulihan Nd dan Dy daripada sumber REE utama dan sekunder, sering kali menggunakan pengekstrakan pelarut selepas pelarutan asid untuk pemisahan yang berkesan. Dalam konteks ini, satu kajian memberi tumpuan kepada pengeluaran Nd dan Dy daripada mineral xenotim tempatan dengan menggunakan asid asetik (CH3COOH) sebagai larutan pelarutan dan Di-(2-etilheksil) asid fosforik (D2EHPA) dalam kerosin pada kepekatan 30% sebagai pelarut organik. Analisis Serakan Tenaga Pendarfluor Sinar-X (ED-XRF) telah mengukur kepekatan Nd dan Dy sebelum dan selepas pengekstrakan. Kajian ini mengenal pasti keadaan optimum, mendedahkan kecekapan pengekstrakan puncak: 99.4% bagi Nd dan 99.3% bagi Dy, dicapai dengan menggunakan kepekatan larutan pelarutan 1M dan nisbah isi padu fasa akuos-ke-organik (A/O) 1:1. Proses pengekstrakan menunjukkan keberkesanan tertinggi pada suhu 30 °C dalam tempoh 20 minit. Akibatnya, penyelidikan ini menyoroti potensi CH3COOH sebagai medium pelarutan xenotim untuk pengekstrakan Nd dan Dy dengan D2EHPA. Oleh itu, kajian ini membuktikan bahawa CH3COOH berpotensi digunakan sebagai medium pelarutan xenotim untuk pengekstrakan Nd dan Dy dengan D2EHPA.

Kata kunci: Disprosium; D2EHPA; neodimium; unsur nadir bumi; xenotime

 

RUJUKAN

Altansukh Batnasan, Ariunbolor Narankhuu, Ariuntuya Battsengel, Kazutoshi Haga & Atsushi Shibayama. 2021. Effect of organic extractants on the extraction of rare earth elements from sulphuric acid leach liquor. Atlantis Highlights in Chemistry and Pharmaceutical Sciences 2: 142-148.

Arellano Ruiz, V.C., Kuchi, R., Parhi, P.K. & Lee, J.Y. 2020. Environmentally friendly comprehensive hydrometallurgical method development for neodymium recovery from mixed rare earth aqueous solutions using organo-phosphorus derivatives. Scientific Report 10: 16911.

Ariffin, M.M., Sohaimi, N.M., Yih, B.S. & Saleh, N.M. 2019. Magnetite nanoparticles coated with surfactant Sylgard 309 and its application as an adsorbent for paraben extraction from pharmaceutical and water samples. Analytical Methods 11(32): 4126-4136.

Balaram, V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontier 10: 1285-1303.

Battsengel, A., Batnasan, A., Narankhuu, A. & Haga, K. 2018. Hydrometallurgy recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy 179: 100-109.      

Cao, S., Zhou, C., Pan, J., Liu, C., Tang, M., Ji, W., Hu, T. & Zhang, N. 2018. Study on influence factors of leaching of rare earth elements from coal fly ash. Energy and Fuels 32(7): 8000-8005.

Chen, Z., Li, Z., Chen, J., Kallem, P., Banat, F. & Qiu, H. 2022. Recent advances in selective separation technologies of rare earth elements: A review. J. Environ. Chem. Eng. 10(1): 107104.

Dushyantha, N., Batapola, N., Ilankoon, I.M., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N. & Dissanayake, K. 2020. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews 122: 103521.

Farzaneh Sadri, Amir Mohammad Nazari & Ahmad Ghahreman. 2017. A review on the cracking, baking and leaching processes of rare earth element concentrates. Journal of Rare Earths 35(8): 739-752.

Gergoric, M., Barrier, A. & Retegan, T. 2019. Recovery of rare-earth elements from neodymium magnet waste using glycolic, maleic, and ascorbic acids followed by solvent extraction. Journal of Sustainable Metallurgy 5: 85-96.

Guan, Q., Sui, Y., Yu, W., Bu, Y., Zeng, C., Liu, C., Zhang, Z., Gao, Z., & Ru-an, C. 2022. Moderately efficient leaching of rare earth elements from phosphogypsum via crystal regulation with EDTA-2Na during gypsum phase transformation and recovery by precipitation. Hydrometallurgy 214: 105963.

Hazan, R., Kones, J., Takip, K., Sapiee, N., Azhar, N. & Paulus, W. 2019. Recovery of thorium and rare earth element (REE) from different particle size of xenotime mineral. Journal of Nuclear and Related Technologies 16(02): 25-30.

Hussain, M.E.A. & Smith, R.F. 2023. Extraction techniques in analytical chemistry. Analytical Chemistry Review 45(3): 301-320.

Irfana Kabir Ahmad, Zawawi Samba Mohamed, Nur Fardilla Amrul, Chong Wai Quan, Nurul Ain Abdul Jalil, Noor Ezlin Ahmad Basri & Mohd Reza Azmi. 2021. Composting fruit and vegetable waste using black soldier fly larvae. Jurnal Kejuruteraan 33(4): 837-843.

Jacqueline, K., Norhazirah, A., Nur Aqilah, S. & Khaironie, M.T. 2019. Alkaline fusion of Malaysian monazite and xenotime for the separation of thorium and uranium. Jurnal Sains Nuklear Malaysia 31(1): 37-41.

Jiang, X., Liu, Y., Wang, W. & Chen, H. 2023. Optimization of washing parameters to enhance impurity removal during mineral processing. Minerals Engineering 208: 107618.

Ji, B., Li, Q. & Zhang, W. 2022. Leaching recovery of rare earth elements from the calcination product of a coal coarse refuse using organic acids. Journal of Rare Earths 40(2): 318-327.

Jowitt, S.M., Werner, T.T., Weng, Z. & Mudd, G.M. 2018. Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry 13: 1-7.

Mancheri, N.A., Sprecher, B., Bailey, G., Ge, J. & Tukker, A. 2019. Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling 142: 101-112.

Miller, J., Zhang, L. & Wang, L. 2019. Environmental impacts of organic versus mineral acids in leaching processes. Environmental Science & Technology 53: 987-995.

Mnculwane, H.T. 2022. Rare earth elements determination by inductively coupled plasma mass spectrometry after alkaline fusion preparation. Analytica 3(1): 135-143.

Niskanen, J., Lahtinen, M., & Perämäki, S. 2022. Acetic acid leaching of neodymium magnets and iron separation by simple oxidative precipitation. Cleaner Engineering and Technology 10: 100544.

Noorashikin, M.S., Mohamad, S. & Abas, M.R.B. 2013. Cloud Point Extraction (CPE) of parabens using nonionic surfactant phase separation. Separation Science and Technology 48(11): 1675-1681.

Norhazirah AzharKhaironie Mohamed TakipRoshasnorlyza HazanWilfred Selyvester PaulusNur Aqilah Sapiee & Jacqueline Kones. 2020. Solvent extraction of thorium from Malaysian xenotime using tributyl phosphate (TBP). IOP Conference Series; Materials Science and Engineering 785: 012015.

Norseyrihan, M.S., Noorashikin, M.S., Adibah, M.S.N. & Yusoff, F. 2016. Cloud point extraction of methylphenol in water samples with low viscosity of non-ionic surfactant Sylgard 309 coupled with high-performance liquid chromatography. Separation Science and Technology 51(14): 2386-2393.

Pan, J., Zhao, X., Zhou, C., Yang, F., & Ji, W. 2022. Study on Solvent Extraction of Rare Earth Elements from Leaching Solution of Coal Fly Ash by P204. Minerals 12(12): 1547.

Pusporini, N.D., Sediawan, W.B., Wahyu Rachmi Pusparini, W.R., Ariyanto, T. &  Sulistyo, H. 2021. Equilibrium analysis of neodymium - yttrium extraction in nitric acid media with D2EHPA as solvent. Chemical Thermodynamics and Thermal Analysis 1-2: 100006.

Sanjith Udayakumar, Norlia Baharun, Sheikh Abdul Rezan, Aznan Fazli Ismail & Khaironie Mohamed Takip. 2021. Economic evaluation of thorium oxide production from monazite using alkaline fusion method. Nuclear Engineering and Technology 53(7): 2418-2425.

Stein, R.T., Kasper, A.C. & Veit, H.M. 2022. Recovery of rare earth elements present in mobile phone magnets with the use of organic acids. Minerals 12: 668.

Sun, P-P., Kim, D-H. & Cho, S-Y. 2018. Separation of neodymium and dysprosium from nitrate solutions by solvent extraction with Cyanex272. Minerals Engineering 118: 9-15.

Wang, L., Li, Y. & Zhang, Q. 2022. Advances in leaching techniques for rare earth elements from secondary sources: A review. Journal of Environmental Management 315: 114373.

Wang, S., Li, Q. & Zhang, Y. 2020. Selective leaching of rare earth elements using organic acids. Minerals 10(7): 608-618.

Zhou, Y., Li, Z. & Li, Q. 2018. The effects of mineral matrix on the efficiency of rare earth element leaching. Minerals 8(4): 157.

Zhao, K., Liu, W. & Zheng, X. 2021. Corrosion resistance of materials in organic acid-based leaching solutions. Corrosion Science 176: 109013.

Zhu, Y. & Zhang, L. 2021. Rare earth elements: Applications and technological advancements. In Handbook on the Physics and Chemistry of Rare Earths 58: 123-156.

 

*Pengarang untuk surat-menyurat; email: noorashikin@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya